
Computation, Fluency,
and Algorithms
What do we mean by computation? Suppose a col-
league asks you what 3.29 × 17.6 is. You could sim-
ply say, “It is 3.29 times 17.6.” This statement is

true, but clearly not what your colleague is
asking for. Your colleague means to ask,
“What is the result when you compute the
expression 3.29 × 17.6?” To “compute” a
value means to find a standard representation

of the numerical value of a mathematical expres-
sion—in this case, the decimal representation.

The representation depends on the context and
may need to be specified because the standard rep-
resentation can take a variety of forms. For exam-
ple, when computing 1 3/4 ÷ 1/2, you may choose
to represent the value as 7/2 (a fraction), 3 1/2 (a
mixed number), or 3.5 (a decimal). Your choice will
depend on how you want to use the result.

Computation is a particular form of mathemati-
cal problem solving. Typically, but not exclusively,
it involves the performance of basic numerical
operations (+, –, ×, ÷) on some class of numbers.
(“Computing” and “calculating” are used inter-
changeably here in their full mathematical sense.
The fact that computing may engage significant
problem-solving skills can easily be revealed when
computing prime factorizations of greater numbers,
areas and volumes, integrals, and so on.)

Considering what is meant by the term fluency is
a little more complicated. According to Principles
and Standards for School Mathematics, “Fluency
refers to having efficient, accurate, and generaliz-
able methods (algorithms) for computing that are

322 TEACHING CHILDREN MATHEMATICS

Computational Fluency,
Algorithms, and

Mathematical Proficiency:
One Mathematician’s

Perspective

Hyman Bass

Hyman Bass, hybass@umich.edu, is a professor of mathematics and mathematics education
at the University of Michigan. His mathematical research is in algebra. In mathematics edu-
cation, he collaborates with Deborah Ball to investigate the mathematical knowledge that the
teaching of mathematics entails.

This article owes many of its ideas, examples, and exposition to discussions with Deborah Ball,
to whom the author expresses his indebtedness.

I
n recent years, few aspects of mathematics education have been as much discussed and debated as the

notions of computational fluency and algorithms. A National Research Council report, Adding It Up:

Helping Children Learn Mathematics (Kilpatrick, Swafford, and Findell 2001), offers an image of what

it means to have skill with mathematics, or mathematical proficiency. This concept is helpful for moving

beyond these debates. Mathematical proficiency includes five components: conceptual understanding, proce-

dural fluency, strategic competence, adaptive reasoning, and productive disposition (Kilpatrick, Swafford, and

Findell 2001, p. 116). That these components are not separate but fundamentally intertwined is important to

note. This article illustrates some of the ways in which the goal of computational fluency and an appreciation

of mathematical algorithms are related to this larger concept of mathematical proficiency.

 This material may not be copied or distributed electronically or in any other format without written permission from NCTM.
 Copyright © 2003 The National Council of Teachers of Mathematics, Inc. www.nctm.org. All rights reserved.

based on well-understood properties and number
relationships” (NCTM 2000, p. 144). Susan Jo
Russell (2000) provides a synopsis of the concept
of computational fluency represented in Principles
and Standards for School Mathematics. She cites
the document as making central three characteris-
tics: efficiency (not getting lost or bogged down),
accuracy (being careful and keeping good
records), and flexibility. Note that these terms are
used to describe qualities of the person doing the
computing, not properties of an algorithm, as I use
the terms in this article.

Seeking a single, clearly described, generic
solution method that works in all cases makes
sense for mathematical problems that occur repeat-
edly, in more or less standard forms. Such a general
solution method, for a general class of problems, is
called an algorithm. An algorithm consists of a pre-
cisely specified sequence of steps that will lead to
a complete solution for a certain class of computa-
tional problems. One familiar example is the tradi-
tional long-division algorithm. If we wanted to
instruct a machine to solve such a class of prob-
lems, the algorithm would tell us how to program
the steps that the machine should perform on any
instance of the problem to get the desired answer.
Indeed, an algorithm can be thought of as a con-
ceptual version of a machine program.

The term “algorithm” sometimes provokes dis-
dain among educators because of the oppressive
ways in which traditional algorithms often are
taught. In fact, algorithms are remarkable tools in
mathematics and computer science. They have
great practical and theoretical importance. They
also are important in learning mathematics.

A Familiar Algorithm
Consider the following example of a familiar algo-
rithm to solve multidigit subtraction computation
problems:

36
– 19

One could invent a variety of ways to perform this
calculation. One way is the following:

1. Check whether the number in the ones place in
the top number (in this case, 6) is greater than
the number in the ones place in the bottom
number (in this case, 9).
(a) If yes, subtract the second of these num-

bers from the first and write the result
below the line, in the ones column.

(b) If no (as in this case), regroup the tens and
ones in the top number so that you repre-

sent the number with one less ten in the
tens place and ten more ones in the ones
place, and record this regrouped represen-
tation of number. (In this case, rewrite 36
as 2 tens and 16 ones.) If the digit in the
tens place is 0, regroup the hundreds, tens,
and ones as follows: First, regroup the
hundreds and tens (for example, 403
would be rewritten as 3 hundreds, 10 tens,
and 3 ones). Then, with 10 tens available,
regroup the tens and ones. Follow analo-
gous procedures if the hundreds digit, and
possibly other digits to the left, also is 0.
Subtract the number in the ones place in
the bottom number from the number now
in the ones place in the top number (in this
case, 16 – 9). Record the result below the
line, in the ones column.

2. Move to the numbers in the tens place. Repeat
the steps in number 1, but subtract in the tens
column. If regrouping is necessary, regroup
hundreds and tens as above, and so on.

3. Continue in a similar fashion until all places of
the numbers have been checked, regrouped if
necessary, and subtracted.

4. The answer appears in standard base-10 place-
value notation below the line.

The result, with written notation of the perfor-
mance of the steps, might look like this:

2
3

1
6

– 1 9
1 7

Writing out the steps of this algorithm in words, in
detail, and with precision is elaborate and complex.
Recorded with mathematical notation, as above,
the algorithm is elegantly compact. This compact-
ness, however, hides the meaning and complexity
of the steps involved. That this sequence of steps
works efficiently to subtract any two whole num-
bers, no matter how great, is remarkable.

Important Qualities
of Algorithms
Algorithms have qualities that are important to
evaluating the algorithms’ usefulness. These
include the following:

• Accuracy (or reliability). The algorithm should
always produce a correct answer.

• Generality. The algorithm applies to all
instances of the problem, or class.

• Efficiency (or complexity). This refers to whether
the cost (the time, effort, difficulty, or resources)

323FEBRUARY 2003

\

324 TEACHING CHILDREN MATHEMATICS

of executing the algorithm is reasonably low
compared to the input size of the problem.

• Ease of accurate use (versus error proneness).
The algorithm can be used reasonably easily
and does not lead to a high frequency of error in
use.

• Transparency (versus opacity). What the steps
of the algorithm mean mathematically, and why
they advance us toward the problem solution, is
clearly visible.

To qualify as an algorithm, a procedure must be
characterized by accuracy and generality. Ease of
accurate use, efficiency, and transparency also are
desirable qualities, although they often are in com-
petition with one another. An algorithm that will be
used to program a machine must be efficient, to
achieve computational speed, but does not have to
be transparent. If humans will learn and use the
algorithm, however, transparency and ease of use
are important.

An Alternative Algorithm
Consider a different algorithm for the same class of
multidigit subtraction problems. We can examine
how it works for the same problem:

36
– 19

2 �3 → 17

How does this method work? Instead of requiring
the user to check whether the top number, in a
given place, is greater than the bottom number, this
algorithm permits the user to subtract separately on
each column, using integers (negative as well as
positive) to keep track of the parts of the calcula-
tion. In written form, the steps are as follows:

1. Subtract the number in the ones place of the bot-
tom number from the number in the ones place
of the top number (in this case, 6 – 9). Write the
result below the line, in the ones place (in this
case, �3).

2. Move to the tens place, subtracting the bottom
number from the top number and writing the
result. Continue in the same way until all places
of the number have been subtracted.

3. Add the results in each column from left to
right, and record the answer in standard decimal
notation. In this example, add 20 + �3; the result
is 17.

Looking at the structure of this algorithm is one
way to understand why it works. We can write an
analogous subtraction equation in algebraic form:

(3x + 6) – (x + 9) = (2x – 3)

This says that when you subtract the term (x + 9)
from (3x + 6), you will always get (2x – 3), no mat-
ter what x is. But consider the case when x = 10.
Then this equation can be written as follows:

(30 + 6) – (10 + 9) = (20 – 3)

Notice that this is the problem on which we have
been working: 36 – 19. This way of writing the
problem shows that the answer is the result of sub-
tracting 30 – 10 (which is 20) and 6 – 9 (which is

�3). Then the answer (17) is produced from 20 – 3.
Also important to note is that the (20 – 3) corre-
sponds to the digits 2 and �3, and these numbers
represent 20 and �3. Because we can think of place-
value representation of a number as a “polynomial”
in powers of ten, this way of writing out the prob-
lem can help show that the algorithm works for any
subtraction computation.

Comparing Familiar and
Alternative Algorithms
How do these two algorithms compare?

• Accuracy (or reliability): Both algorithms pro-
duce the correct answer every time.

• Generality: Both algorithms apply to all multi-
digit subtraction problems.

• Efficiency (or complexity): The second algo-
rithm is possibly more efficient because the
steps are exactly the same for each place. No
conditional judgment is required as it is for the
first, where the user must determine in each col-
umn whether regrouping, and possibly even
multiple regrouping, is required.

• Ease of accurate use (versus error proneness):
The second algorithm can be used reasonably
easily and does not lead to a high frequency of
error in use. The first often leads to errors, espe-
cially when the user makes mistakes in the nota-
tion—for example, forgetting to completely
record the result of regrouping.

• Transparency (versus opacity): The steps of the
second algorithm are more transparent because
each step involves merely a straight calculation
that can be easily seen. The first algorithm
involves a clever use of decimal notation to
rewrite numbers in non-standard form so that in
each place numbers of sufficient magnitude
exist to carry out the subtractions without use of
negative numbers (for example, as in rewriting
36 to 20 + 16 before subtracting 9 in the ones
column). The meaning of what is being done,
however, is not notationally apparent.

A Third Method
We can consider a third approach to subtracting
multidigit numbers, using the same problem:

36 37 37
– 19 → – 20 → – 20

17

This method involves changing the two numbers
by equal amounts and transforming the calculation
into an easier one to perform. In this case, 37 – 20
can be performed mentally. Adding 1 to each of the
numbers preserves their difference.

The steps might be written as follows:

1. Inspect the problem and decide how to trans-
form the two numbers so that their difference
remains the same but the calculation becomes
simple.

2. Add or subtract the same amount to both num-
bers, based on judgment made in step 1.

3. Perform the mental calculation and write the
result.

How does this method compare, using our
criteria?

• Accuracy (or reliability): This method—adding
or subtracting like amounts to each number—
will always preserve the difference.

• Generality: This method would work for all
multidigit subtraction problems.

• Efficiency (or complexity): This method is
sometimes, but not always, efficient. Sometimes
it requires high levels of user judgment and
moving a complex computation to the front of
the problem in order to produce a simple calcu-
lation at the end.

• Ease of accurate use (versus error proneness):
This method depends heavily on user judgment
and is prone to error in some cases.

• Transparency (versus opacity): This method is
fairly transparent. Adding or subtracting like
amounts to each number clearly preserves the
difference.

A significant difference exists between the third
method and the first two. The first two are algo-
rithms; they involve steps that can be programmed
to produce the correct answer. Although the third
method is accurate and works in general, the
amount to add to or subtract from each number
cannot be precisely programmed. Deciding what to
add or subtract depends on individual user judg-
ment. It is not even clear that there is always a good
choice available. Consequently, although it is a
valid method, it cannot be called an algorithm.

Any mathematical problem admits multiple
approaches and solution methods, each with its
own merits and trade-offs. Proficient problem
solvers will understand how to deploy a variety of
such methods, how they are related, and how to
make a discriminating choice of which method to
use in any problem instance. This applies, in par-
ticular, to choices of algorithms or other methods
for computational problems. It may, and often
does, happen that an optimal algorithm or method
to use varies significantly across different regimes
of the problem class. For example, the third
method is a useful choice for problems such as the
one we have been using but would be less helpful
for others. Computational fluency entails bringing
problem-solving skills and understanding to com-
putational problems.

Student-Invented
“Algorithms” and
Mental Arithmetic
Russell (2000) has highlighted the central role that
student-invented procedures and strategies for
computation play. She illustrates this by analyzing
how a computationally fluent student might
approach three different subtraction problems (see
fig. 1).

The problem-solving skills outlined in figure 1
certainly are important and valuable. At the same
time, note what is not present. First, these three
approaches, as presented, fall short of being algo-
rithms for subtraction of multidigit numbers.
“Counting up” becomes an algorithm only when
one specifies a definite and general procedure for
the counting. One possibility, counting up by ones,
would define an algorithm (it is accurate and gen-
eral) but would not be practical overall. Doing the
count more efficiently, as above, clearly is prefer-
able but is idiosyncratic to this case; what general
form this might take is unclear. Similarly, the pro-
cedures used in cases (b) and (c) depend on special
features of the problem instance. Because they are
inherently not general, they are not algorithms.

One of the attractive features of these strategies
is that they can be executed mentally and with
transparent steps. They permit us to eliminate
much record-keeping by relying on short-term
memory and meaningful mental models of the
operations. This works to treat many of the con-
crete computations that arise in daily life, in and
out of the classroom. Human short-term memory is
finite, however, which imposes important limita-
tions on the scale of computations that can be
treated by such methods. One response to this is to
emphasize mental computation and have recourse
to technology when the regime of the problems

325FEBRUARY 2003

326 TEACHING CHILDREN MATHEMATICS

becomes too large for mental methods.
This response would be compelling if the only

purpose of learning about computation was to
carry out explicit computations; however, it is
shortsighted. Learning, with understanding, about
computation and algorithms to solve problems is a
natural and fertile site for learning about the
detailed nature of numbers and operations and their
various models and representations. Generality is
one of the most important and powerful character-
istics of mathematics. Students should not only
know how to solve concrete problems with ad hoc
methods but also be able to conceptually describe
and experience mathematical phenomena that
extend beyond direct concrete experience. For
example, they should be able to conceive and
“feel” the nature and structure of computations that
are too large or abstract to execute concretely.
Instruction, even in the early grades, should afford
opportunities to develop such sensibilities about
mathematical generality.

Basic Skills,
Understanding,
and Technology
Some of the public debates about education reform
have pitted “basic skills,” which are often charac-
terized as knowledge of “standard” algorithms for
numerical operations, against conceptual under-
standing. Sensible people now recognize that this
is a false dichotomy. Both forms of knowledge are
essential and are basically intertwined (Kilpatrick,
Swafford, and Findell 2001). Nonetheless, some
people stubbornly persist in arguing about which
should come first. Some even argue that learning

traditional algorithms can impair children’s devel-
opment of computational fluency. The evidence
that they often cite, however, essentially refers to
methods of instruction that have emphasized mind-
less and rote learning of algorithms. No reason
exists to assume that this teaching approach is
inherent to learning about algorithms. Regrettably,
this confusion has provoked a lot of needless and
sometimes acrimonious debate. We must recognize
the mathematical richness and usefulness of algo-
rithms and find ways to help students develop
appropriate mathematical proficiency in construct-
ing and analyzing them.

Traditional algorithms have evolved over time
for frequent daily users who want to do routine cal-
culations, essentially mechanically. They tend to be
cleverly efficient (minimizing the amount of space
and writing used) but also opaque (the steps are not
notationally expressive of their mathematical
meaning). Therefore, if these algorithms are
learned mechanically and by rote, the opaque
knowledge, unsupported by sense making and
understanding, often is fragile and error-prone, as
many researchers have documented.

Another common refrain is that the presence of
computational technology now renders obsolete
the need to learn “basic skills” because machines
will do the computing for people. This argument is
misguided. Clearly, the availability of technology
calls for significant changes to the emphasis and
orientation of computational instruction. These
changes do not mean simply teaching students how
to use calculators and computer algebra systems.

The nature and ubiquity of calculators bring into
the foreground the very concept of algorithms—
their nature, their qualities (such as accuracy, gen-

F
IG

U
R

E
 1 Possible student strategies for solving three different subtraction problems

(a) 673 – 484
One method is “counting up.” The approach for solving (a) might be to break the problem into the fol-
lowing mentally tracked steps:

673 – 484 = (500 – 484) + (600 – 500) + (673 – 600)
= 16 + 100 + 73 = 189

(b) 673 – 473
In example (b), the identical units and tens digits permit the student to recognize immediately that the
difference is 600 – 400 = 200.

(c) 673 – 492
Example (c) invites the flexible problem solver to use the observation that 492 + 8 = 500. This may be
deployed in either of the (mentally tracked) forms:

673 – 492 = 673 – 500 + 8 = 173 + 8 = 181, or
673 – 492 = (673 + 8) – (492 + 8) = 681 – 500 = 181.

erality, efficiency, ease of use, and transparency),
and how they might be analyzed, compared, and
invented. Viewed in this light, traditional, novel,
and student-invented algorithms suddenly occupy
the same interactive space. In this space, the pri-
mary aims of study are the analyses and compar-
isons of algorithms, not simply the numerical
answer that any one of them might produce. In this
kind of instructional milieu, learning a traditional
algorithm means learning not only how to execute
it with several examples but also how to explain the
mathematical significance of its various steps and
prove that it produces a correct answer. Students
should develop this sort of understanding for each
algorithm they study. This kind of instruction
offers an image of developing computational flu-
ency in which basic skill is both strongly present
and inseparable from conceptual understanding. It
also supports the fluent and discriminating use of
technology and an appreciation of, for example,
the effects of errors caused by rounding off.

Understanding algorithms is central to develop-
ing computational fluency. Teachers must combine
a renewed appreciation of the contributions algo-
rithms make to mathematical proficiency with a
design of approaches to teaching and learning that
can develop both understanding and skill. They
also must appreciate what efficiency affords and
respect what it takes to use compact methods sen-
sibly, flexibly, and appropriately.

References
Kilpatrick, J., J. Swafford, and B. Findell. Adding It Up: Help-

ing Children Learn Mathematics. Washington, D.C.:
National Research Council, 2001.

National Council of Teachers of Mathematics (NCTM). Princi-
ples and Standards for School Mathematics. Reston, Va.:
NCTM, 2000.

Russell, Susan Jo. “Developing Computational Fluency with
Whole Numbers.” Teaching Children Mathematics 7
(November 2000): 154–58. ▲

327FEBRUARY 2003

Do You Have
Something to Add?
Share with readers and the Editorial Panel your
opinions about any of the articles or departments
appearing in this issue by writing to “Readers’
Exchange,” NCTM, 1906 Association Drive,
Reston, VA 20191-1502;
or by sending e-mail to
tcm@nctm.org.

